RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance.
نویسندگان
چکیده
The polymorphic barley (Hordeum vulgare) Mla locus harbors allelic race-specific resistance (R) genes to the powdery mildew fungus Blumeria graminis f sp hordei. The highly sequence-related MLA proteins contain an N-terminal coiled-coil structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR region. Using transgenic barley lines expressing epitope-tagged MLA1 and MLA6 derivatives driven by native regulatory sequences, we show a reversible and salt concentration-dependent distribution of the intracellular MLA proteins in soluble and membrane-associated pools. A posttranscriptional process directs fourfold greater accumulation of MLA1 over MLA6. Unexpectedly, in rar1 mutant plants that are compromised for MLA6 but not MLA1 resistance, the steady state level of both MLA isoforms is reduced. Furthermore, differential steady state levels of MLA1/MLA6 hybrid proteins correlate with their requirement for RAR1; the RAR1-independent hybrid protein accumulates to higher levels and the RAR1-dependent one to lower levels. Interestingly, yeast two-hybrid studies reveal that the LRR domains of RAR1-independent but not RAR1-dependent MLA isoforms interact with SGT1, a RAR1 interacting protein required for the function of many NB-LRR type R proteins. Our findings implicate the existence of a conserved mechanism to reach minimal NB-LRR R protein thresholds that are needed to trigger effective resistance responses.
منابع مشابه
Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus.
A large number of resistance specificities to the powdery mildew fungus Blumeria graminis f. sp. hordei map to the barley Mla locus. This complex locus harbors multiple members of three distantly related gene families that encode proteins that contain an N-terminal coiled-coil (CC) structure, a central nucleotide binding (NB) site, a Leu-rich repeat (LRR) region, and a C-terminal non-LRR (CT) r...
متن کاملFlor Revisited (Again): eQTL and Mutational Analysis of NB-LRR Mediated Immunity to Powdery Mildew in Barley
Genes encoding early signaling events in pathogen defense often are identified only by their phenotype. Such genes involved in barley-powdery mildew interactions include Mla, specifying race-specific resistance; Rar1 (Required for Mla12-specified resistance1), and Rom1 (Restoration of Mla-specified resistance1). The HSP90-SGT1-RAR1 complex appears to function as chaperone in MLA-specified resis...
متن کاملPowdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames.
In barley (Hordeum vulgare), the Mla13 powdery mildew resistance gene confers Rar1-dependent, AvrMla13-specific resistance to Blumeria graminis f. sp. hordei (Bgh). We have identified cDNA and genomic copies of Mla13 and used this coiled-coil nucleotide-binding site leucine-rich repeat protein-encoding gene as a model for the regulation of host resistance to obligate biotrophic fungi in cereals...
متن کاملCell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway.
The barley Mla locus encodes 28 characterized resistance specificities to the biotrophic fungal pathogen barley powdery mildew. We describe a single-cell transient expression assay using entire cosmid DNAs to pinpoint Mla1 within the complex 240-kb Mla locus. The MLA1 cDNA encodes a 108-kD protein containing an N-terminal coiled-coil structure, a central nucleotide binding domain, and a C-termi...
متن کاملVirus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley.
We successfully implemented virus-induced gene silencing (VIGS) in barley (Hordeum vulgare) for the functional characterization of genes required for Mla13-mediated resistance toward the biotrophic barley pathogen Blumeria graminis f. sp. hordei. Initially, barley cultivars were screened for their ability to host the barley stripe mosaic virus (BSMV)-VIGS vector by allowing its replication and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 16 12 شماره
صفحات -
تاریخ انتشار 2004